Images of SMC Research 1996

Architectures for Human-Computer Communication

A.A.M. Kuijk

1. INTRODUCTION

Human-Computer Communication deals with efficient transtfer of informa-
tion between humans and computers and with information structures that
tie in with human conceptual abilities. The human visual system 1s a most
powerful image cognition machine that is able to perceive, analyze, classify
and evaluate a great deal of information in real-time. Therefore, interactive
computer graphics can significantly enhance our ability to understand data,
to perceive trends, and to visualize real or imaginary objects.

The design and development of commercially available graphics systems
has primarily been driven by the availability of cost-effective hardware tech-
nology. A more proper strategy would also take into account user require-
ments: i.e., interaction mechanisms provided by graphics user interfaces
influence the design of the underlying graphics system architecture. The
design of a graphics system that strictly adheres to this concept leads to
several challenging research issues.

We shall briefly describe the basics and research issues of interactive coms-
puter graphics. Next we will outline the research activities carried out at

CWI.

2. GRAPHICS AND INTERACTION
A graphics system provides facilities to

e specify (or model) a scene in terms of a set of logical graphical elements;

395

396

A.A M. Kulik

e specily parameters according to which the scene is transformed into an
lmage;
e handle graphical input.

The scene is mapped onto the display- or image-space. This mapping (also
known as rendering) includes both geometric and attribute transformations.
The result, a set of display primitives which describe an image, is stored
in a refresh buffer. The type of display primitives in which the image is
described depends on the type of display technology in play (e.g., a set of
pixels for a raster display or a set of line drawing instructions for a vector
display).

A logical model of the graphics system envisions the mapping of a scene
onto the display space as a stepwise process in which primitives travel
through a pipeline of functional modules (see figure 1). This model dis-
tinguishes several logical representation levels of the scene that exist in the
1mage synthesis pipeline and the operations applicable on these represen-
tations. Each module of the pipeline performs an elementary graphical
operation on all passing primitives. Graphical input originates from data
that comes in via physical input devices. The raw, device dependent in-
put data, are converted into a set of input primitives. This conversion is
handled completely within a logical input model so that all types of phys-
ical Input devices and associated user actions are encapsulated within this
logical model.

Actions involved in generating graphical feedback upon user input in-
clude:

e handling of the logical input data:

e handling of the input primitives:

e possible updates of some application data:
e traversing (part of) the graphics pipeline;
e update of the refresh buffer.

Response on user input is a key determining factor of the quality of the user
interface. A system’s response time depends on several factors. Obvious
factors are the amount of processing involved in the feedback-loop and the
raw performance of the computing resources. Other factors are operating
system related dependencies such as interrupt handling, context switching
and the like.

3. RESEARCH ISSUES

Effective interactive computer graphics applications require considerable
computing resources to guarantee a sufficiently fast response. In the last
decade, we have witnessed a remarkable improvement of computing power
due to improved processor technologies. This evolution can be expected

ARCHITECTURES FOR HUumar-COmPUTER COMMUNIC ATION.

O Representation logical - |PUL 10 MOdIify output
level processor - — « Input forwarded to other processors

Figure 1. Logical model of image generation.

to continue. However, to satisfy the need for higher image quality, scene
complexity and interactivity, experts in the field estimate that four to five
orders of magnitude more processing power than available in present day
processors is necessary. Such a gap can only be bridged by making use ot
highly parallel multiprocessor systems.

The inherent nature of graphics algorithms makes that they are well suited
to be implemented on multiprocessor systems. In increasing levels of com-
plexity, the computing tasks can be organized based on pixels, vertices,
polygons, patches, objects or frames. Furthermore, the image generation
pipeline consists of a number of clearly separable tasks. As a result graph-
ics algorithms can be mapped onto numerous multiprocessor configuration
alternatives.

Many solutions have been proposed to distribute the work involved in
fast generation of high quality images across multiprocessor systems [1].
The image generation process itself is a pipeline of several sequential pro-
cesses which automatically suggests functional subdivision (see figure 2 on
the left). Subdivision of the image generation pipeline in smaller tasks can
be done up to a limited number of steps only, so that the maximum degree of
multiprocessing by means of pipelining only is limited. Also data dependent
operations make it hard to balance the load for a purely pipelined archi-
tecture. Image-space partitioning, i.e., subdivision of the image in small
parts that are handled by separate subsystems (see figure 2 in the middle),
implies that all primitives have to be processed by all processors (i.e., the
system is object-serial). Hence the throughput is limited by the processor
speed. Object-space partitioning, i.e., each object is handled by one of the
processors of the system (see figure 2 on the right), results in multiple pixel

397

A A M. Kulk

Figure 2. Subdivision strategies.

streams that have to be combined (i.e., the system is pixel-serial). A simple
solution implies synchronization which reduces efficiency. An asynchronous
solution requires extra memory and composition hardware. Practical solu-
tions in both commercial and academic systems are often mixtures of several
of these three ‘pure’ subdivision strategies.

Presently there exist two mainstream approaches to make raster graphics
308 systems more viable for interaction:

e Perform each step involved in the graphical feedback loop as quickly as
possible by pushing the hardware limits to the maximum, viz., running
many processors per given task in the image synthesis pipeline.

e Restructure the functional model to reduce the effort needed to com-

plete the graphical feedback loop, viz., looking at image synthesis from
a fresher perspective.

A common characteristic of the first approach is to identify and isolate
a simple (subset of) operation(s) and map it, frequently in a conceptually
simplistic manner, to hardware.

T'he second approach is no different from the first one in terms of its goal,
l.e., produce a responsive raster graphics system. Yet, the methodology is

ARCHITECTURES FOR HUMARN-COMPUTER COMMUNICATION

quite different. In this case, one analyzes interaction tasks and then tries to
develop original data structures and devise new architectural organizations
which guarantee that for all interaction tasks representations of the proper
level are at hand. Only then one maps expedient tasks into hardware as
much as this is justified.

4. RESEARCH AT CWI

The computational complexity community has long ago cone to know that
the laws of parallel computation are qualitatively different from that of
the sequential computation; algorithms do not always smoothly translate
from uniprocessor to multiprocessor architectures. We believe that without
clarifying the algorithmic improvements, brute-force mappings of existing
eraphical algorithms into hardware will introduce only temporary speed-ups
and these improvements will be nullified in time by growing user demands.
The real solution to the hard problems of computer graphics will come, in
our view, from a direction which considers the intrinsic difficulty of user
driven problems from a computational standpoint. Therefore, research at
CWI adhered to the above mentioned second approach: first examine the
structure of the image synthesis pipeline in relation with interaction re-
quirements, and only then try to push the hardware limits to the maximum
where this is needed [4].

We observed that in an interactive computer graphics application a user
interacts with a three-dimensional model (or object) at several levels of
abstraction. For an efficient support of interactive editing and incremental
updates a raster independent representation of the three-dimensional model
should be immediately available at each of these levels. This forms the basis
of a lean, yet flexible, computation model.

As a consequence of this raster independent object-space paradigm, the
research at CWI has focussed on explicit identification of all visible surtaces,
shading methods, rasterization hardware and adaptive rendering.

4.1. Visible surfaces
A fundamental step in generating images of 3D scenes 1s clipping and hidden
surface removal: the resulting image exists of (parts of) surfaces that are
visible from a certain position in space. Several types of algorithms exist
to tackle this classical computer graphics problem [3]. In most graphics
systems hidden surface removal is supported by hardware that checks the
visibility on pixel level (the so-called z-buffer algorithm). However, one ot
the levels of abstraction with which the user interacts most trequently 1s the
level which contains only all visible surfaces. Such a level 1s not available 1n
a pixel-based z-bufter architecture.

Explicit identification of all visible surfaces implies that the visibility cal-
culation takes place in object-space. Interactive applications involve incre-

399

400

A A M. Kuik

mental picture changes. The research at CWI resulted in a hidden surface
removal algorithm which includes a set of logical operations on 3D objects.
These operations can be used to add and delete individual objects so that in-
cremental changes affect only those objects of which the visibility is changed.
Thus a firm basis for interaction and animation is established. Our algo-
rithm operates on a pre-sorted representation of objects and a geometry-
based data structure to store these objects. This specific representation of
objects reduces the complexity of both the hidden surface removal and the
scan-conversion process. The data structure reduces the search space for
geometry-based object identification and facilitates data distribution for a

multiprocessor implementation.
4.2. Shading methods

By looking around us in the real world
we observe the result of rather compli-
cated physics: the interaction of pho-
tons with the inhomogeneous entities
that make up the physical environment.
T'his reality is far too complicated to
simulate accurately. Therefore com-
puter generated images are produced
using a simplified illumination model
that describes the interaction between
Figure 3. Vectors involved in Phong’s light and the elements of the simulated
Hlumination model. 3D environment.

Most popular shading methods are based on the illumination model de-
veloped by B.T. Phong [2] that has the potential to produce remarkably
realistic results, in spite of its simplicity. The model incorporates ambient,
diffuse and specular components. The intensity vector I is calculated using
the expression

I=TIumy+ » Jigne - (N-L)+(E-R)").

SOUrces

In this expression I, represents the amount of energy of the indirect light
cast upon the surface area by the environment, Ijj,): is the intensity of the
light source, N is the surface normal, L is the direction of the light source,
E 1s the direction of the viewpoint, R is the direction of reflection and n is
a coeflicient which relates to the reflectivity of the surface. The vectors N,
L, E and R are normalized (see figure 3).

The Phong shading method, known since 1975, based on this illumination
model 1nvolves calculation of the intensity across polygons (a graphics area
primitive) based on interpolated vectors on a per-pixel basis. Due to the
costs involved (which includes renormalization of interpolated vectors and
calculation of the above expression for each individual pixel), this method

CCHITECTURES FOR HumarFC OmMPUTER COMMUIIIC ATION

Figure 4. Examples of the most advanced shading methods presently used in interactive
computer graphics.

s not suited for high speed rasterization. We developed a similar shad-
ing method in which interpolation of vectors involved m the calculation 1s
interpreted as rotations. Spherical trigonometry then leads to a line:
pression of the angle between the vectors along a scanline. "T'he outcome 1s a
parameterized piecewise quadratic expression for each intensity term. "These
srms can be handled directly by forward differencing. The image quality
obtained is virtually the same as the quality of Phong shaded nne

L]

-
-
}

-~
-

3. Rasterization hardware
display controller handles the refresh process of a graphics display device.
leveloped a display controller which reads arca drawing instructions’
and which in real-time produces scanline based video signals to control the
electron beam which scans the display area. The path of the electron beam

prescribes the organization of the scan-conversion proc
$s 1nvolv

LS

.

88 (see figure 5H).
s calculation of the

The vertical phase of the scan-conversion proc

o

402

A A M. Kuik

intersection of objects with a horizontal scanline and determination of the
colour function along that scanline. The actual rasterization takes place
in the horizontal phase of the scan-conversion process. As a result of our
research on illumination models, this can be reduced to relatively simple
operations repeated numerous times. For tasks like this we opted for a
custom designed high speed 36-bit forward differencing engine, implemented
as a highly pipelined systolic array.

A working prototype system
(figure 6) has been built to pro-
vide further insight into the oper-
ation of the technologically chal-
lenging part of the system: the
custom VLSI Difference Engine.
This prototype produces pictures
on a CRT display directly from
instructions and without bufter-
Figure 5. Scanpath of raster display device. ing 1mages in a frame buffer.

The Difference Engine, which was developed as a very specialized pixel
generator 1s really very general; it can handle any order forward differences
with 36-bit numerical accuracy and an 1llns cycle time. The spline inter-
polation goes with constant cost independent of span length. Since the
Difference Engine can interpolate any spline (polynomial) curve, any signal
that 1s expressed in terms ot a spline basis can be reconstructed. Not only
that, the architecture with its accumulator allows one to sum over incre-
mentally generated output so that the splines can be suimmed over different
scales to produce the final image to any required accuracy. The reconstruc-
tion time depends not on the spacing of the knots in the splines (the lengths
of the interpolation spans) but only on the number of knots. An image can
be decompressed even at video rates provided that the number of knots is
less than the number of pixels to be generated (by some fixed overhead per
scanline).

This has opened the way for using this hardware also to reconstruct im-
ages that have been coded with a wavelet transtorm [5]. The wavelet trans-
form is a multiresolution description of the image that can be decoded to
yield more and more accurate reconstructions of an image. The transform
also precisely locates high-frequency features in space and low-frequency
signals in the frequency domain. In fact it is often argued that wavelet
transforms perform better than the discrete cosine transform advocated by
the JPEG standard, it fits in better with human perceptual aptitudes and
1S a more compact coding.

ARCHITECTURES FOR HUMAN-COMPUTER COMMUNICATION

Fithenne!

T'ransputer hink Transputer
clustet

IMS B408
framebutier

IMS B409
display board

video wiy!hif

montor
0" \

- ~
.--' - ~ -
. T

Sy F'in’!lbLlS & .. " :. . : e e -r:' oo s g % W -.-. -: .:') o . -. : Pix;:lbu:;:-':fl
-% ln ::;h:... .::S.‘:::. . n " : » : : . .o w Ny 'O'.% aut :E::
o

-':‘" ‘. ‘- 0 Yo'e .
e el TN A et \'.:-\
R Rt RS
'.'.-.-.& Sohe oo Soeeete ey . Sutet :‘-.:.-.:i. -‘:-:_-.‘::"-.v.-u-.:. e
e s aes : T e ates

oraret (Packed N S Brevniasse '% . ot
o L RO - o e 0 wrasure e e e "-.
w .mhtructmnh:‘-,’ o wieben ateTalaty

AL A, A a% X

™S

[J
S tus

IS LIons ptxeldata
Unpacking
and
configuration
cieunt
& :::. .

nen
l':'t : . ot s .

RO, &

L) L]
L]
¥e¥
a]
"
L
e
-':‘ﬁ
l.

.‘I.:‘:':?‘ o L |
2

‘: ["'::.’.‘.::. ..". o
...‘"' [] .. '. [J .‘
L 4 A ‘.' ! a
s’ ‘:

o
.I i" I':::;'. .I

“
l'.-'l .‘:': :5:"‘."' I. I'-

X Processor Array

o
2%
0

'- x .‘ "' L J
[) i LR
% %
ol
e

& .IC I':b
e

'I‘
e
®
e

[)
".’I. » ‘f

':'

"y
.':"
et
I.i

* ‘:'
I" .
"y

W
"o,

s

oy

QRRR
oI,
: AR : &
:""'l': w4 a : '.E'uq.. .':. l.}:.-.:.:. -'".':H:' %‘-:.:::-‘..::EVE.\:::".;::.E;'::::.%‘E::':} .::':.' » llml‘::q.:-:‘:t:~ n.:. » Q.. "':*":?..\..%:"'"V"':"E:.EE::E:E :h:!‘i:‘:.':
A, Gy WY 'n" Py) e et et nu et W M) a0 wa's’s *u. o l: S " ™
e
sgejslelulole Rt ':"':"":::‘..:':':':':':‘..“:'k::.‘-"'_:::"'::.:""*h"ﬂ:':'. T N R DMK KSIARI AN
atweels o . et letu¥e e uta e e e te e ety Suontetelern etutetetatery tututatetaletet e duln il asvpa srarnaete et atelutedn teteln:
SRR e synaly SEERREERE RS R e R
e

»
A
K o
o L L N) L »
P M N ate 0%’ "
RSP AC M ML NI I W MMM I XK Mgt

s

e
..#.::" '.-. .' & ¢ 4
:: LA

LN)
-

I"’:’

[]
¥y u:t mie

Figure 6. Difference Engine embedded in prototype.

4.4. Adaptive rendering

Generating a physically perfect image would by far exceed the processing

power of any state of the art supercomputer. Due to this, a whole scale of 403
rendering models emerged, each with a different level of approximation of

the ‘physical correct’ image. Based on requirements of a specific applica-

tion, one of these rendering models can be selected. If the system is tuned

for worst case situations the efficiency will be far from optimal. On the

other hand if the system is optimized for ‘normal’ situations its worst case
behaviour may be unacceptable.

Adaptive image generation is a means to adjust the image generating
process to the possibilities of a particular moment. The quality of the image,
and thus the cost of rendering, is related to the time available between
successive updates. Ideally, this results in the best possible image at any
time. There are two distinct aspects that determine the cost of the image
generation process: the quality of the rendering process, and the quality of

404

A A M. Kulk

the object representation. These can be varied according to the need.

For a study on adaptive rendering we implemented an environment to test
a rule-based system (ADMIRE). This rule-based system serves to optimize
the performance of interactive graphics applications by dynamically select-
ing rendering algorithms, data structures and level of detail on a per-object
basis.

5. CONCLUSION

A thorough rethink of interactive graphical workstations from a user point
of view has uncovered a range of novel approaches to system architectures.
CWI has built an integrated set of solutions based on these insights that
span conceptual, software and hardware solutions. Interesting spin-offs in
image compression are also being exploited.

REFERENCES

1. 5. MoOLNAR, H. Fucus (1990). Advanced raster graphics architec-
ture. Computer Graphics: Principles and Practice, The Systems Pro-
gramming Series, Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 855-920.

2. B.T. PHONG (1975). Illumination for computer generated images.
Communications of the ACM 18(6), 311-317.

3. I.E. SUTHERLAND, R.F. SPROULL, R.A. SCHUMACKER (1974). A

characterization of ten hidden-surface algorithms. Computing Surveys
6(1), 1-55.

4. A.A M. Kuuk, E.H. BLAKE, P.J.W. TEN HAGEN (1992). An Archi-
tecture for Interactive Raster Graphics, CWI Report CS-R9229.

5. P.C. MARrais, E.H. BLAKE, A.A.M. KUuK (1993). A spline-wavelet

image decomposition for a difterence engine. C'WI Quarterly 6(4), 335-
362.

